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Accurate and early assessment of hemorrhage in the field is essential for the 
initiation of optimal prehospital care.  At present this is done using clinical 
signs and symptoms.  Stroke volume (SV) is a primary indicator of the degree of 
central blood volume, but measurement is not feasible in the field. The 
purpose of this study was to assess the efficacy of similarity based modeling 
(SBM) in predicting SV based on data collected from a noninvasive wearable 
sensing device.   
 

BACKGROUND 

10 subjects wore a wearable sensing device during lower body negative 
pressure (LBNP), an experimental model of hemorrhage used in conscious 
humans.  The device measures: activity, heart rate (HR), HR variability, pulse 
transit time, respiratory rate, O2 saturation and tidal volume.   A progressive 
LBNP protocol was applied which produced profound central hypovolemia; 
LBNP was stopped at the point of cardiovascular collapse (i.e., presyncope).  A 
finger cuff blood pressure monitoring device (Finometer) provided a reference 
beat-to-beat measurement of SV.  SBM was trained using the sensing device 
data and subsequently to generate off-line estimates of SV.  The reference SV 
measurements were used to assess the accuracy of the SBM model. 
 

METHODS 
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Figure 1.  SBM is a multivariate data driven modeling technique that 
is most often used to monitor complex systems in order to detect 
anomalous behavior.  An example is the human cardiopulmonary 
system.  Historical data representative of normal (or baseline) 
system behavior are used to train SBM for subsequent use during 
monitoring.  Anomalous behavior is detected by examining the 
differences between the input  variables and the corresponding 
SBM estimates of those inputs.    
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Figure 2.  In this study SBM was used in a less typical modeling mode 
than described in Figure 1.  The goal was to generate an estimate of a 
variable that cannot effectively be measured in the field but is a good 
indicator of the progression of hypovolemia [1, 2].  SBM was trained to 
provide an inferential estimate of SV based on a set of  physiological 
feature variables that can be noninvasively measured in the field using a 
wearable sensing device.  To train SBM, data collected during LBNP 
experiments were used from both the wearable device and the 
laboratory blood pressure device (for measuring SV). 

SBM estimates of SV were highly correlated with reference SV measurements.  
The mean and median r2 values for the SBM estimates were 0.92 and 0.93 
respectively (p-values << 0.001) and the standard deviation was 10 ml.  The 
SBM SV estimate results for 4 out of the 10 subjects showed bias towards the 
end of the experiment.  This is because the variation in the data increases as 
the LBNP experiment progresses due to the differences in each subjects 
physiological response to the protocol.  A larger sample size would provide 
additional training data samples during this time of increased variation, which 
would likely reduce the biasing effects.  Nonetheless, clear SV trends indicative 
of central hypovolemia were apparent in all subjects. 

RESULTS 

SBM-based estimates of SV were highly correlated with reference 
measurements of SV.  SBM-based algorithms could easily be embedded into 
noninvasive, wearable devices for real-time determination of SV in the field.  

CONCLUSION 
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Figure 4.  A subject in the LBNP device and experimental protocol.  The pressure  inside the 
LBNP chamber is first reduced by steps of 15 mmHg for 5 minute intervals.  Once the pressure 
is reduced by  60 mmHg the pressure reduction steps are reduced to 10 mmHg.   The protocol 
progresses until the point of presyncope  (decrease in blood pressure and/or presyncopal 
symptoms) 

Figure 6.  LBNP experiment results.  The top two rows show the stages of the LBNP protocol that each subject 
progressed to.  In each case, the experiment was stopped at the point of presyncope.  The bottom two rows show 
the corresponding SBM estimated and reference SV values for each subject.  Given the relatively small sample size 
for the study, a “leave-one-out” cross-validation approach was used to generate separate SBM models for each of 
the 10 subjects using data from the remaining 9. Utilizing this approach avoids over-fitting to a subject’s own 
acquired data while maximizing the SV range covered by the training data.  This is also representative of how SBM 
would be applied in the field, i.e. SBM trained using laboratory data and then applied to patients in the field that 
were not part of the laboratory data collection experiments. 

20 30 40
20
40
60
80

100
120
140

Subject 1: SBM Estimates of SV

S
V

 (m
l)

15 20 25 30 35
20
40
60
80

100
120
140

Subject 2: SBM Estimates of SV

10 20 30
20
40
60
80

100
120
140

Subject 3: SBM Estimates of SV

22 24 26 28 30 32 34
20
40
60
80

100
120
140

Subject 4: SBM Estimates of SV

10 20 30
20
40
60
80

100
120
140

Subject 5: SBM Estimates of SV

20 30 40
20
40
60
80

100
120
140

Subject 6: SBM Estimates of SV

S
V

 (m
l)

Time (Mins)
15 20 25 30 35

20
40
60
80

100
120
140

Subject 7: SBM Estimates of SV

Time (Mins)
15 20 25 30

20
40
60
80

100
120
140

Subject 8: SBM Estimates of SV

Time (Mins)
20 30 40

20
40
60
80

100
120
140

Subject 9: SBM Estimates of SV

Time (Mins)
20 30 40

20
40
60
80

100
120
140

Subject 10: SBM Estimates of SV

Time (Mins)

 

 

Finometer SV
SBM Estimate of SV

20 30 40

80
60
40

20
 0
Subject 1: SBM Estimates of SV

LB
N

P
 (m

m
H

g)

15 20 25 30 35

80
60
40

20
 0
Subject 2: SBM Estimates of SV

10 20 30

80
60
40

20
 0
Subject 3: SBM Estimates of SV

22 24 26 28 30 32 34

80
60
40

20
 0
Subject 4: SBM Estimates of SV

10 20 30

80
60
40

20
 0
Subject 5: SBM Estimates of SV

20 30 40

80
60
40

20
 0
Subject 6: SBM Estimates of SV

LB
N

P
 (m

m
H

g)

Time (Mins)
15 20 25 30 35

80
60
40

20
 0
Subject 7: SBM Estimates of SV

Time (Mins)
15 20 25 30

80
60
40

20
 0
Subject 8: SBM Estimates of SV

Time (Mins)
20 30 40

80
60
40

20
 0
Subject 9: SBM Estimates of SV

Time (Mins)
20 30 40

80
60
40

20
 0
Subject 10: SBM Estimates of SV

Time (Mins)

Figure 5.  Example waveform data collected by the wearable sensing device 
(Figure 3) for subject 1 during the LBNP experiment. The data shown are 
sampled at 256 Hz. 3D accelerometer data are as acquired at a sampling rate 
of 100 Hz. The physiological features are generated from these waveform 
data. 

9.54 9.56 9.58 9.6 9.62 9.64 9.66 9.68 9.7 9.72 9.74
-20

-10

0

10

20

Minutes

-5000

0

5000

10000
-4000

-2000

0

2000

4000

1000

1500

2000

2500

3000

3500 EKG 

RED PPG 

IR PPG 

BIOIMPEDANCE 

Subject 1 Wearable Sensing Device Waveform Data 

Figure 3.  The wearable sensing device collects waveform data from 
chest electrodes (A, B, C, D) and a forehead reflectance PPG sensor 
(P).  The outer electrodes  (A and D) provide a high frequency low 
current source for measuring bioimpedance.  The inner electrodes (B 
and C) measure the response to the source current from which 
impedance across the lower chest is calculated.  The B and C 
electrodes are used simultaneously to capture EKG waveform data.  
Both Red and IR PPG waveforms are captured by the reflectance 
sensor on the forehead (E).  The set of physiological features used as 
input to the SBM model are generated from the acquired waveform 
data. 
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Figure 7.  Plots of the SBM SV estimate versus the reference measurement of SV are displayed in blue.  
A regression line is shown in red.  These results demonstrate good correlation between the SBM SV 
estimate and reference SV.  However, the SBM SV estimates for Subjects 3, 5, 7 and 10 showed bias 
during a portion of the data (stronger nearer to the end of the experiment) as evidenced in Figure 6 
and the fact that the regression line des not go through the origin.  This is not unexpected given the 
small sample size.      

Figure 8.  The left bar graph shows the R2 values for the SBM SV estimates compared to the reference 
SV values for each subject.  The mean and median values for the R2 values were 0.92 and 0.93 
respectively with p-values << 0.001.  The standard deviation of the R2 values was 10 ml.  The right graph 
shows the corresponding RMSE  values for each case.   
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