

## Background

- Transfer learning refers to the transfer of knowledge between different machine learning models or application domains with a similar aim.
- Law and Chuah<sup>1</sup> have characterized a learning organization as possessing a process of continuous "Driving, Enabling, Learning, Outcome,"
- Little is known of transfer learning in the context of transferring process knowledge and structure in complex healthcare delivery settings.
- NorthShore University HealthSystem deployed Cascade study series which utilizes a continuous remote patient monitoring (cRPM) platform with structured cascading and escalation pathways for at-home monitoring of patients.



Guided by transfer learning concepts, the knowledge learned from Cascade HF deployment was adapted to support an intra-hospital start-up of the Cascade lleostomy study.



- Cascade studies use non-invasive wearable biosensors to collect patients' ambulatory physiological data which is analyzed by machine learning algorithms to alert the likelihood of patient deterioration.
- Home health nurses review the monitoring  $\bullet$ platform daily and escalate patient abnormal status and alerts to the clinical team for early intervention.
- The first cRPM use case was deployed in heart failure (HF) patients in Dec 2020.
- Cascade HF design was informed by **Consolidated Framework for Implementation** Research (CFIR)<sup>2</sup> to guide the Cascade HF protocol development, workflow design, and deployment.
- We collected and evaluated Cascade HF implementation data, workflow and communication processes, and alerting structure to reconfigure the protocol and workflow<sup>3</sup>.
- Informed by the findings, we transferred the HF study protocol structure, alerting structure, and workflow process to the ileostomy study, with minimal tailoring of the finer details to adapt to the ileostomy clinical team and patients' needs.



## Transferring Process Knowledge and Protocol Structure in a Continuous Remote Patient Monitoring Program: Heart Failure to Ileostomy Clinical Use Case Study Wei Ning Chi, MBBS, MPH<sup>1</sup>, Courtney Reamer, MD<sup>1</sup>, Robert Gordon, MD, PharmD<sup>1</sup>, Nitasha Sarswat, MD<sup>1,2</sup>, Charu Gupta, MD<sup>1</sup>, Klara Brugger, RN<sup>1</sup>, Emily White VanGompel, MD, MPH<sup>1,2</sup>, Izabella Szum<sup>1</sup>, Melissa Morton-Jost, MBA<sup>1</sup>, Urmila Ravichandran, MS<sup>1</sup>, Karen Larimer, PhD<sup>3</sup>, David Victorson, PhD<sup>4</sup>, John Erwin, MD<sup>1,2</sup>, Anthony Solomonides PhD<sup>1</sup>, Rema Padman, PhD<sup>5</sup>, Nirav S Shah, MD, MPH<sup>1,2</sup> <sup>1</sup>NorthShore University HealthSystem, Evanston, IL, USA; <sup>2</sup> University, Pittsburgh, PA, USA; <sup>3</sup> PhysIQ, Inc., Chicago, IL, USA; <sup>3</sup> PhysIQ, Inc., Chicago, IL, USA; <sup>4</sup> Northwestern University, Evanston, IL, USA; <sup>5</sup> Carnegie Mellon University, Pittsburgh, PA, USA.

### Figure 1: Cascade Study Series General Workflow



#### Table 1: Process, Protocol, and Alert Structured from Cascade HF to lleostomy

| CFIR Framework     | Cascade HF                                                         | Findings with HF deployement                                                                                                                     | Actions associated with findings                                                                                                         | Transferred to<br>Cascade lleostomy                                                                                                                                      |
|--------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Planning           | Co-developed<br>workflow with HF<br>attending                      | Design phase did not<br>include all key<br>stakeholders                                                                                          | Paused study and<br>involved HHNs and HF<br>APPs to redesign<br>workflow                                                                 | Involved all clinical<br>tream members in<br>design phase                                                                                                                |
| Engaging           | 2 study kick off<br>education meetings<br>to support<br>engagement | Complex training<br>materials and low<br>attendance rate                                                                                         | Personalized training<br>materials and multiple<br>training sessions                                                                     | <ul> <li>Flexible training<br/>schedules and<br/>personalized<br/>training material</li> <li>Surgery team<br/>champion<br/>encouraging<br/>engagement</li> </ul>         |
| Executing          | HHN escalation<br>workflow                                         | <ul> <li>HHN escalating to<br/>HF RN who does<br/>not take care of<br/>patients</li> <li>No standardized<br/>HF team<br/>intervention</li> </ul> | <ul> <li>HHN escalate cases<br/>to HF APP and HF<br/>attending</li> <li>Created<br/>standardized<br/>workflow for HF<br/>team</li> </ul> | <ul> <li>Tailored escalation<br/>pathways to ostomy<br/>RN, clinical RN, and<br/>surgeons</li> <li>Created<br/>standardized<br/>workflow for surgery<br/>team</li> </ul> |
| Technology         | EHR smart note with logic built in                                 | Inconsistent usage<br>of the EHR note                                                                                                            | Re-designed EHR note with clinical team                                                                                                  | <ol> <li>Personalized<br/>training</li> <li>Co-developed EHR<br/>note with colorectal<br/>clinical team</li> </ol>                                                       |
| Alerting structure |                                                                    | Additional key alerts<br>showed potential in<br>identifying patient<br>deterioration                                                             | Created customized<br>workflow for additional<br>key alerts                                                                              | Ileostomy workflow<br>includes MCI and key<br>alerts                                                                                                                     |





| Start up time (months) |
|------------------------|

Protocol finalization time (r

Number of significant devia during soft launch

Transfer learning from process modeling and protocol structures can potentially increase the efficiency in project start-up, inform tailoring of protocol pathways, and improve operation quality

More research is needed to determine the scope, extent and adaptability of transfer learning between different clinical use cases.

- Learning in Organizations. Springer 2020.



# phys IQ

|         | Cascade HF | Cascade lleostomy |
|---------|------------|-------------------|
|         | 10         | 3                 |
| months) | 10         | 4                 |
| ations  | 18         | 5                 |

# Conclusions

# **Future Plans**

# References

I. Law KM, Chuah KB (eds.), Project Action Learning (PAL) Guidebook: Practical

2. Damschroder, LJ, Aron, DC, Keith, RE, et al. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implementation Sci. 2009. doi: 10.1186/1748-5908-4-50 3. Chi WN, Reamer C, Gordon R, et al. Continuous Remote Patient Monitoring: Evaluation of the Heart Failure Cascade Soft Launch. Appl Clin Inform. 2021;12(5):1161-1173. doi:10.1055/s-0041-1740480